Introduction: Disease-modifying therapies (DMTs) have been shown to improve disease outcomes in multiple sclerosis (MS) patients. They may also impair the immune response to vaccines, including the SARS-CoV-2 vaccine. However, available data on both the intrinsic immune effects of DMTs and their influence on cellular response to the SARS-CoV-2 vaccine are still incomplete. Methods: Here, we evaluated the immune cell effects of 3 DMTs on the response to mRNA SARS-CoV-2 vaccination by comparing MS patients treated with one specific therapy (fingolimod, dimethyl fumarate, or natalizumab) with both healthy controls and untreated patients. We profiled 23 B-cell traits, 57 T-cell traits, and 10 cytokines, both at basal level and after stimulation with a pool of SARS-CoV-2 spike peptides, in 79 MS patients, treated with DMTs or untreated, and 32 healthy controls. Measurements were made before vaccination and at three time points after immunization. Results and Discussion: MS patients treated with fingolimod showed the strongest immune cell dysregulation characterized by a reduction in all measured lymphocyte cell classes; the patients also had increased immune cell activation at baseline, accompanied by reduced specific immune cell response to the SARS-CoV-2 vaccine. Also, anti-spike specific B cells progressively increased over the three time points after vaccination, even when antibodies measured from the same samples instead showed a decline. Our findings demonstrate that repeated booster vaccinations in MS patients are crucial to overcoming the immune cell impairment caused by DMTs and achieving an immune response to the SARS-CoV-2 vaccine comparable to that of healthy controls.

Implications of disease-modifying therapies for multiple sclerosis on immune cells and response to COVID-19 vaccination / Orrù, Valeria; Serra, Valentina; Marongiu, Michele; Lai, Sandra; Lodde, Valeria; Zoledziewska, Magdalena; Steri, Maristella; Loizedda, Annalisa; Lobina, Monia; Piras, Maria Grazia; Virdis, Francesca; Delogu, Giuseppe; Marini, Maria Giuseppina; Mingoia, Maura; Floris, Matteo; Masala, Marco; Castelli, M Paola; Mostallino, Rafaela; Frau, Jessica; Lorefice, Lorena; Farina, Gabriele; Fronza, Marzia; Carmagnini, Daniele; Carta, Elisa; Pilotto, Silvy; Chessa, Paola; Devoto, Marcella; Castiglia, Paolo; Solla, Paolo; Zarbo, Roberto Ignazio; Idda, Maria Laura; Pitzalis, Maristella; Cocco, Eleonora; Fiorillo, Edoardo; Cucca, Francesco. - In: FRONTIERS IN IMMUNOLOGY. - ISSN 1664-3224. - 15:(2024). [10.3389/fimmu.2024.1416464]

Implications of disease-modifying therapies for multiple sclerosis on immune cells and response to COVID-19 vaccination

Devoto, Marcella;
2024

Abstract

Introduction: Disease-modifying therapies (DMTs) have been shown to improve disease outcomes in multiple sclerosis (MS) patients. They may also impair the immune response to vaccines, including the SARS-CoV-2 vaccine. However, available data on both the intrinsic immune effects of DMTs and their influence on cellular response to the SARS-CoV-2 vaccine are still incomplete. Methods: Here, we evaluated the immune cell effects of 3 DMTs on the response to mRNA SARS-CoV-2 vaccination by comparing MS patients treated with one specific therapy (fingolimod, dimethyl fumarate, or natalizumab) with both healthy controls and untreated patients. We profiled 23 B-cell traits, 57 T-cell traits, and 10 cytokines, both at basal level and after stimulation with a pool of SARS-CoV-2 spike peptides, in 79 MS patients, treated with DMTs or untreated, and 32 healthy controls. Measurements were made before vaccination and at three time points after immunization. Results and Discussion: MS patients treated with fingolimod showed the strongest immune cell dysregulation characterized by a reduction in all measured lymphocyte cell classes; the patients also had increased immune cell activation at baseline, accompanied by reduced specific immune cell response to the SARS-CoV-2 vaccine. Also, anti-spike specific B cells progressively increased over the three time points after vaccination, even when antibodies measured from the same samples instead showed a decline. Our findings demonstrate that repeated booster vaccinations in MS patients are crucial to overcoming the immune cell impairment caused by DMTs and achieving an immune response to the SARS-CoV-2 vaccine comparable to that of healthy controls.
2024
SARS-CoV-2; disease-modifying therapy; immune response; immune-phenotyping; multiple sclerosis
01 Pubblicazione su rivista::01a Articolo in rivista
Implications of disease-modifying therapies for multiple sclerosis on immune cells and response to COVID-19 vaccination / Orrù, Valeria; Serra, Valentina; Marongiu, Michele; Lai, Sandra; Lodde, Valeria; Zoledziewska, Magdalena; Steri, Maristella; Loizedda, Annalisa; Lobina, Monia; Piras, Maria Grazia; Virdis, Francesca; Delogu, Giuseppe; Marini, Maria Giuseppina; Mingoia, Maura; Floris, Matteo; Masala, Marco; Castelli, M Paola; Mostallino, Rafaela; Frau, Jessica; Lorefice, Lorena; Farina, Gabriele; Fronza, Marzia; Carmagnini, Daniele; Carta, Elisa; Pilotto, Silvy; Chessa, Paola; Devoto, Marcella; Castiglia, Paolo; Solla, Paolo; Zarbo, Roberto Ignazio; Idda, Maria Laura; Pitzalis, Maristella; Cocco, Eleonora; Fiorillo, Edoardo; Cucca, Francesco. - In: FRONTIERS IN IMMUNOLOGY. - ISSN 1664-3224. - 15:(2024). [10.3389/fimmu.2024.1416464]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1731958
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact